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Abstract. Visual Object Tracking (VOT) is focused on tracking moving objects 

across sequences of video frames. A VOT system consists of an integrated frame-

work that combines models, algorithms, and hardware to ensure robust tracking 

performance despite changes in environmental conditions, lighting, object ap-

pearance, and other factors. This work presents the modification and evaluation 

of the Struck tracker to ensure compatibility with the OpenCV 4.9 library, as the 

original implementation was developed using OpenCV 2.4. This update is re-

ported as a first step toward the implementation of the Struck algorithm on a SoC-

FPGA platform as part of an ongoing Ph.D. research project. A series of perfor-

mance experiments were conducted using all categories of the ALOV300++ 

benchmark dataset to compare the updated Struck tracker against three baseline 

OpenCV-based trackers: CSRT, MIL, and KCF. Experimental results demon-

strate that the updated Struck tracker achieved the highest F1-score (0.720 ± 

0.122) and precision (0.647 ± 0.139) among the evaluated algorithms, with a pro-

cessing speed of 77.1 FPS. These findings highlight the trade-offs between track-

ing accuracy and computational efficiency, and demonstrate the feasibility of up-

dating legacy tracking code for use with modern computer vision frameworks 

and datasets. 
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1 Introduction 

Visual object tracking (VOT) is defined by the analysis of video sequences for the pur-

pose of establishing the location of the target over a sequence of frames starting from 

the bounding box given in the first frame [1, 2]. It is an active research field with rele-

vant applications in different domains, including surveillance, robotics, autonomous 

vehicles, and augmented reality [3]. At the same time, it is a challenging task due to the 

computational resources needed to keep a real-time response while dealing with a series 

of diverse factors like complex object shapes, irregular movements, scene illumination 

changes, and object occlusion, among others. 

A variety of paradigms, design methodologies and hardware platforms have been 

proposed in the literature to address the design complexity of efficient VOT systems 
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[4, 5]. Among these, the statistical reference model introduced by Smeulders et al. [1] 

stands out for emphasizing the importance of incorporating predictive models—partic-

ularly for motion estimation—rather than relying solely on appearance-based represen-

tations. This perspective has driven the development of adaptive tracking mechanisms, 

which continuously update model parameters and internal representations to maintain 

robust tracking performance under dynamic conditions [6].  

Building on this need for adaptability, two prominent paradigms have emerged in 

the literature: (a) tracking-by-detection, in which tracking is formulated as a repeated 

detection problem: in each frame, a classifier is trained or updated to detect the target 

object in the subsequent frame, typically within a predefined search region; and (b) 

correlation filter-based tracking, in which tracking is achieved by learning a discrimi-

native filter to locate the target object by measuring similarity (correlation) between a 

target template and candidate regions in subsequent frames[7]. These paradigms reflect 

different strategies for incorporating temporal changes into the tracking model. 

Within this framework, a subset of VOT algorithms known as online learning has 

proven especially well-suited for large-scale and non-stationary tracking tasks, as it 

processes data sequentially and updates models in real time. However, despite its adapt-

ability and predictive capabilities, the kernelized variant of this approach incurs signif-

icant computational costs, primarily due to the overhead associated with maintaining 

and updating kernel-based structures-posing notable challenges in resource-constrained 

environments, such as embedded systems or FPGA-based platforms[8, 9]. 

In this context, a subset of representative VOT algorithms has been selected to sup-

port the objectives of this study. These include Struck, CSRT, MIL, and KCF, each 

embodying distinct approaches to model updating, feature representation, and compu-

tational complexity. The Struck algorithm combines structured support vector ma-

chines with kernel-based methods for tracking. It formulates tracking as a structured 

output prediction problem and learns a discriminative tracker by leveraging appearance 

and motion cues[10]. The CSRT algorithm integrates channel and spatial reliability to 

enhance robustness against occlusions and background clutter. It employs a kernelized 

correlation filter approach in a multi-channel environment to achieve accurate object 

tracking [11]. The MIL algorithm models tracking as a binary classification problem 

using multiple instance learning. It selects the most probable positive instance within a 

set of candidate instances to track the target object robustly under varying conditions 

[12]. The KCF algorithm uses kernel methods to learn correlation filters in the Fourier 

domain. It efficiently computes the correlation between the target object and candidate 

patches in each frame, enabling real-time tracking with high accuracy [13]. All selected 

trackers were evaluated using the One-Pass Evaluation (OPE) protocol, with average 

Precision, F1-score, and Frames Per Second (FPS) computed for each video sequence, 

as defined in the ALOV300++ dataset by Smeulders et al.[1]. 

This work presents a series of comparative experiments involving four OpenCV-

based trackers—Struck, CSRT, MIL, and KCF—aimed at assessing and discussing 

their relative tracking performance under diverse visual conditions. To enable this eval-

uation, the original implementation of the Struck tracker was updated for compatibility 

with both the OpenCV 4.9 library and the ALOV300++ benchmark dataset. 
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The workstation-based evaluation of these algorithms, as reported in this study, pro-

vides a foundational basis for ongoing research into their feasibility and performance 

on resource-constrained SoC-FPGA platforms, such as the Xilinx ZC706 development 

board. 

The remainder of this document is structured as follows: Section 2 presents a brief 

review of related work. Section 3 outlines the core principles of the Struck tracker and 

the characteristics of the ALOV300++ dataset. Section 4 provides a detailed explana-

tion of the methodology employed in this study. Section 5 presents and discusses the 

results of the conducted experiments. Finally, Section 6 outlines the conclusions and 

future directions of this review. 

2 Related Work 

Several studies have explored the evaluation and enhancement of the Struck algorithm 

in comparison with traditional and modern tracking paradigms, including tracking-by-

detection, correlation filter-based approaches, and recent deep learning models, using 

diverse benchmark datasets and feature representations. 

Adamo et al.[14] analyze the TLD (Tracking-Learning-Detection) and Struck algo-

rithms, originally developed using Fern and Haar visual features, respectively. Their 

study aims to evaluate the performance of these trackers when standard descriptors are 

replaced with local feature representations, including Local Binary Patterns (LBP), Lo-

cal Gradient Patterns (LGP), and Histogram of Oriented Gradients (HOG). The authors 

observe that Struck’s structured SVM, enhanced by kernel mapping, performs particu-

larly well with LBP, LGP, and HOG, thereby improving its adaptability in dynamic 

tracking scenarios. The comparative experiments were conducted using the PETS2009 

dataset, a benchmark commonly used for multi-camera tracking. The results on 

PETS2009 suggest that Struck, when equipped with robust local descriptors, general-

izes effectively—and could potentially benefit even further when evaluated on larger 

and more challenging datasets such as ALOV300++. 

Wang et al.[15] established theoretical connections between two state-of-the-art cor-

relation filter (CF) trackers—Spatial Regularization Discriminative Correlation Filter 

(SRDCF) and Correlation Filter with Limited Boundaries (CFLB)—as well as the 

structured output tracker Struck. While the theoretical aspects of their work fall outside 

the scope of this study, it is important to note that their findings were supported by 

extensive experiments using the OTB50 and OTB100 benchmark datasets. Neverthe-

less, alternative benchmarks such as ALOV300++ offer a complementary evaluation 

environment with greater category diversity and complexity, making them particularly 

valuable for assessing tracking performance in more diverse and realistic visual scenar-

ios. 

Finally, with respect to the performance of Struck in comparison to more recent deep 

learning-based trackers, Minimol et al.[16] conducted comprehensive benchmarking 

across three widely recognized datasets: ALOV300++, OTB (Online Tracking Bench-

mark), and VOT Challenge. In their study, Struck was employed as a classical non-

deep learning baseline due to its well-established reliability and structured SVM-based 
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framework. The evaluation was carried out using standard performance metrics, includ-

ing the F-score, One-Pass Evaluation (OPE), robustness, and accuracy. It is relevant to 

highlight that, while the results demonstrated that Guided MDNet significantly outper-

formed Struck across all major evaluation criteria—particularly in reducing failure rates 

and maintaining consistent target localization under appearance variations— this study 

is referenced solely for its contextual relevance regarding the use of Struck and the 

ALOV300++ dataset. The use of deep learning models for VOT systems falls outside 

the scope of the present work. 

3 Materials and Methods 

The current methodology was developed with the primary objective of studying the 

public-domain implementation of the Struck tracker by Hare et al.[10], in order to 

evaluate its potential for deployment on a workstation platform. This evaluation 

represents the first phase of a broader research effort, with a future stage dedicated to 

implementing and optimizing the tracker on a resource-constrained SoC-FPGA 

platform. 

The following main steps were undertaken as part of the reported methodology: 

• Update of the Struck tracker (Section 3.1) 

• Development of the ALOV300++ evaluation protocol (Section 3.2) 

• Performance evaluation of Struck performance by category (Section 4.1) 

• Comparative performance evaluation of studied trackers (Section 4.2) 

• Overall performance analysis and discussion (Section 4.3) 

3.1 Update of the Struck Tracker 

The original Struck algorithm implementation was developed using OpenCV 2.4. For 

this study, the codebase was updated to ensure compatibility with OpenCV 4.9. This 

migration required a series of modifications due to significant changes in the OpenCV 

API across versions. The two most critical updates are detailed below: 

a) Replacement of the IplImage structure with cv::Mat:. In OpenCV 2.4, image data 

was handled using the IplImage structure—a legacy C-style data type inherited 

from the Intel Image Processing Library. In contrast, OpenCV 4.9 uses cv::Mat, a 

modern C++ class that offers superior memory management, object-oriented de-

sign, and improved compatibility with contemporary OpenCV functions. Given 

that IplImage is now deprecated, all instances of it in the source code were replaced 

with cv::Mat, and all associated image-handling routines were updated accord-

ingly. 

b) Update of core OpenCV header file references. The original implementation in-

cluded legacy headers such as opencv/cv.h and opencv/highgui.h, which are no 

longer supported in recent OpenCV versions. These were updated to their modern 

equivalents: opencv2/core/core_c.h and opencv2/highgui/highgui_c.h, respec-

tively. These headers are essential for accessing OpenCV’s core data structures and 
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GUI functionalities and ensure compatibility with OpenCV’s modular architecture 

introduced in version 2.4 and formalized in later releases. 

The update process also required configuring the CMake build environment to en-

sure compatibility with the updated OpenCV libraries. These configurations enabled 

successful compilation and execution of the tracker across different operating systems. 

3.2 Implementation of the ALOV300++ Evaluation Protocol 

A conventional one-pass evaluation (OPE) protocol was developed in Python to man-

age the workflow of dataset evaluation. The One-Pass Evaluation (OPE) protocol is the 

standard evaluation strategy employed in ALOV300++ to assess tracker performance 

on a per-sequence basis without reinitialization. This approach simulates a real-world 

tracking scenario in which the tracker must operate autonomously, without any manual 

intervention. 

The following steps outline the development process for implementing the standard 

One-Pass Evaluation (OPE) protocol for the Struck tracker. Once the procedure was 

established, only minimal modifications were required to adapt the protocol for the 

other trackers evaluated in this study. 

a) Preliminary analysis of the original struck evaluation procedure: A preliminary re-

view of the original Struck implementation was carried out to understand its eval-

uation procedure with the OTB dataset. The main observation focused on how an-

notation files were processed to compute the Intersection over Union (IoU) metric. 

The OTB dataset provides ground truth annotations on a frame-by-frame basis, 

enabling straightforward calculation of per-frame IoU. In contrast, the 

ALOV300++ dataset includes annotations at fixed intervals, which vary across se-

quences, thereby requiring additional preprocessing to align predictions and anno-

tations for consistent evaluation. 

b) Analysis of ground truth structure and distribution in the ALOV300++ dataset: A 

detailed analysis was conducted on all 314 sequences of this dataset to assess the 

structure and distribution of the ground truth annotations. It was found that 39 se-

quences use a different annotation sampling interval—specifically, annotations 

spaced every five frames—consistent with what is reported by the original dataset 

authors. This irregularity further emphasizes the need for standardized prepro-

cessing to ensure uniform metric computation across all sequences. 

c) Standardization of ground truth format: All annotation files were reviewed and, 

when necessary, converted to the widely adopted (Xmin, Ymin, Width, Height) 

format to ensure compatibility and consistency across evaluation routines. 

d) Definition of evaluation sequences file: A control CSV file was generated to spec-

ify the subset of sequences to be analyzed, including the initial and final frame 

indices for each sequence. 

e) Tracker Execution Automation: A Python script (OPEtest.py) was developed to 

automate the execution of the tracker across the sequences and frame ranges spec-

ified in the control CSV file. For each evaluated sequence, the script generates two 

output files: one containing the bounding boxes produced by the tracker, and an-

other recording the processing time required to generate each output per frame. 
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f) Post-experiment performance analysis: A second Python script (CategoryAnaly-

sis.py) was developed to compute the performance metrics—F1-score, precision, 

and frames per second (FPS)—for all trackers and sequences specified in 

OPEtest.py. In addition to numerical evaluation, the script also generates the cor-

responding plots for visual analysis. 

Although the implementation supports evaluation on any subset of sequences, this 

study considered the complete set of sequences across all categories for each of the 

aforementioned trackers. 

3.3 The Struck Tracker 

The publication "Struck: Structured Output Tracking with Kernels" by Sam Hare et 

al.[10] represents a seminal contribution to the field of VOT. This work introduced an 

adaptive tracking-by-detection framework based on structured output prediction, em-

ploying a kernelized structured output support vector machine (SVM) to directly model 

the relationship between candidate image regions and their corresponding object loca-

tions[17]. By reformulating visual tracking as a structured output prediction problem, 

the authors eliminate the need for an explicit intermediate classification step—such as 

training a separate binary classifier—thereby achieving a more integrated, end-to-end 

framework that is both theoretically robust and practically effective. 

The key properties of the Struck algorithm include (see Figure 1): 

a) the use of an SVM-based structured predictor to capture the contextual relation-

ship between the target and its surroundings. 

b) the application of kernel methods to address non-linearities in object represen-

tation. 

c) a budgeting mechanism that constrains the growth of support vectors, enhancing 

computational efficiency during online operation. 

 

 
Fig. 1. Functional representation of the Struck tracker (modified from [10]). 

 

Struck's main advantages include its online learning capability for real-time adapta-

tion, computational efficiency through support vector budgeting, and robustness to ap-

pearance variations like illumination changes and deformation[10]. However, it is sen-

sitive to partial occlusions, as it continues to update its model based on potentially cor-

rupted inputs. This can lead to a well-known issue in tracking called drift, where the 

50

Víctor Alejandro Méndez-López, Carlos Soubervielle-Montalvo, et al.

Research in Computing Science 154(10), 2025 ISSN 1870-4069



  

model gradually shifts away from the true target due to erroneous updates over 

time[18]. 

3.4 The ALOV300++ Benchmark Dataset 

The Amsterdam Library of Ordinary Videos (ALOV300++) benchmark dataset, intro-

duced by Smeulders et al.[1], consists of 314 short video sequences organized into 14 

challenge categories, primarily sourced from real-world YouTube footage. Designed to 

reflect diverse visual conditions—such as occlusion, motion blur, illumination changes, 

and background clutter—the dataset facilitates detailed evaluation of tracker perfor-

mance under specific challenges. Its realism is reinforced by the inclusion of authentic 

video artifacts like compression noise and dynamic lighting variations. ALOV300++ 

comprises a large number of annotated frames, with ground-truth bounding boxes pro-

vided every fifth frame for most sequences, and is consistent with other standard bench-

marks in the field [19].  

The short sequences average 9.2 seconds in length, with a maximum of 35 seconds, 

and an additional category includes ten longer videos ranging from one to two minutes, 

enhancing its temporal coverage and evaluation flexibility. Table 1 presents a structured 

overview of the ALOV300++ dataset, detailing the number of video sequences, avail-

able raw frames, and annotated frames per category. The dataset comprises 314 video 

sequences, yielding a total of 151,657 raw frames and 16,337 annotations. 

Table 1. The ALOV300++ dataset. 

Category Sequences Available raw 

frames 

Annotations 

01-Light 33 17,789 1,321 

02-SurfaceCover 15 7,118 638 

03-Specularity 18 6,960 916 

04-Transparency 20 5,284 815 

05-Shape 24 10,801 1,133 

06-MotionSmoothness 22 10,546 636 

07-MotionCoherence 12 8,734 409 

08-Clutter 15 8,013 696 

09-Confusion 37 11,554 1,178 

10-LowContrast 23 7,675 1,036 

11-Occlusion 34 13,442 1,371 

12-MovingCamera 22 8,154 1,025 

13-ZoomingCamera 29 8,692 1,168 

14-LongDuration 10 26,895 3,995 

Total 314 151,657 16,337 

3.5 Evaluation Metrics 

Following, metrics used in this work are indicated: the frames per second (FPS) met-

ric measures the number of frames a tracking system can process in one second. It 
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reflects the real-time performance or speed of the tracking algorithm. Higher FPS indi-

cates better suitability for real-time applications, such as autonomous navigation or live 

surveillance. 

IoU is a fundamental metric defined as the ratio of the area of intersection to the area 

of  union of the predicted bounding box and the ground truth bounding box [20, 21]. 

This metric provides an intuitive measure of localization accuracy, with values ranging 

from 0 (no overlap) to 1 (perfect overlap). It is often used as a threshold criterion (usu-

ally defined at 0.5) to determine whether a detection is considered a true positive (see 

Figure 2). 

 

 
Fig. 2. Intersection over union (IoU) metric. a) IoU is calculated as the ratio between 

the intersection area and the union area of the ground truth and the detected bounding 

box. b)IoU examples (image modified from [21]). 

 

Precision, Recall and F1-score are related metrics. Precision quantifies the propor-

tion of predicted bounding boxes that are correct, while recall quantifies the proportion 

of ground truth objects that are successfully detected. The F1-score combines both pre-

cision and recall into a single metric by computing their harmonic mean, providing a 

balanced assessment of detection performance, especially when there is an uneven 

trade-off between false positives and false negatives. In the context of the ALOV300++ 

dataset, recall is typically considered to be 1, as each sequence involves tracking a sin-

gle object with continuous ground truth annotations, and standard evaluation protocols 

assume that the tracker outputs predictions for all frames, eliminating the presence of 

false negatives[1]. 

4 Experiments and Results  

A series of One-Pass Evaluation (OPE) experiments were conducted to assess the per-

formance of the Struck tracker in comparison to the CSRT, KCF, and MIL trackers. 

The experiments were executed on a Whitebox workstation equipped with an Intel Core 

i5 processor (3.50 GHz), 32 GB of RAM, and running the Ubuntu 22.04 operating sys-

tem. For all experiments involving the Struck tracker, the default configuration file pro-

vided with the original implementation was used. 
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4.1 Struck Performance Evaluation 

For this experiment, the Struck tracker was executed on all 314 sequences of the 

ALOV300++ dataset. Precision and F1-score were evaluated on a per-category basis, 

with recall assumed to be 1.0 in all cases. The evaluation of the Struck tracker on the 

complete ALOV300++ dataset yielded a global precision of 0.650 ± 0.134 and an F1-

score of 0.722 ± 0.118, indicating a generally robust performance across diverse track-

ing scenarios.  

Notably, the highest tracking accuracy was achieved in the 08-Clutter category, 

where the tracker attained a precision of 0.905 ± 0.212 and an F1-score of 0.932 ± 

0.162, suggesting strong resilience to background clutter and visual distractions. Con-

versely, the lowest performance was observed in the 14-LongDuration category, with 

a precision of 0.394 ± 0.395 and an F1-score of 0.461 ± 0.375, highlighting the tracker’s 

limitations in maintaining reliable long-term tracking without drift (see Figure 3). 

4.2 Evaluation of Trackers by Category 

For comparative purposes, the previous experiment was repeated with CSRT, KCF, and 

MIL trackers, in addition to a new execution of the updated Struck tracker. The primary 

objective was to evaluate and compare the tracking throughput of each algorithm under 

identical conditions. To ensure consistency with the ALOV300++ dataset processing 

pipeline, the implementations of the selected trackers were adapted from official 

OpenCV examples.  

 

 
Fig. 3. Struck performance evaluation for all ALOV300++ categories. 
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F1-score analysis by category for the mentioned trackers are presented in Figure 4. 

Results show that Struck and CSRT generally achieve higher F1-scores across most 

challenge categories, with Struck performing particularly well in "02-SurfaceCover", 

"08-Clutter", "10-LowContrast", and CSRT excelling in "01-Light", "08-Clutter", and 

"10-LowContrast". MIL demonstrates moderately competitive performance in several 

categories, especially "02-SurfaceCover" and "08-Clutter" but struggles in "12-Mov-

ingCamera" and "14-LongDuration". KCF consistently records the lowest F1-scores 

across most categories, with notably poor results in dynamic camera scenarios such as 

"12-MovingCamera", "13-ZoomingCamera", and "14-LongDuration". Overall, Struck 

and CSRT exhibit stronger robustness under varied visual tracking challenges, particu-

larly in complex or cluttered environments. 

 

 

Fig. 4. Average F1-score of each category. 

Regarding FPS performance across the 14 visual tracking challenge categories (see 

Figure 5), KCF consistently demonstrates the highest throughput, achieving over 1000 

FPS in dynamic conditions such as "07-MotionCoherence" and "14-LongDuration" 

peaking at 300 FPS in the last category. CSRT offers a balanced compromise between 

speed and accuracy, with FPS values ranging from approximately 84.5 to 319.6, show-

ing strong performance particularly in "14-LongDuration" and "01-Light". Struck and 

MIL, while significantly slower than KCF and CSRT, maintain stable frame rates be-

tween 42.2 and 86.4 FPS. Notably, Struck shows consistent FPS across categories, re-

flecting stable computational behavior. Overall, KCF leads in execution speed but at 

the expense of accuracy, while CSRT strikes a favorable trade-off for scenarios requir-

ing both real-time performance and reliability. 
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Fig. 5. Average frames per second of each tracker by category. 

4.3 Global Results 

The global results presented in Table 2 and Figure 6 indicate that Struck and CSRT 

exhibit relatively higher F1-scores—0.720 ± 0.122 and 0.706 ± 0.166, respectively—

compared to KCF (0.551 ± 0.115) and MIL (0.649 ± 0.132), suggesting potentially bet-

ter tracking performance under the tested conditions.  

 

Table 2. Performance comparison of evaluated trackers. 

Tracker Precision F1-score FPS Total dataset 

execution time 

CSRT 0.633 ± 

0.179 

0.706 ± 

0.166 

135.900 ± 

98.160 

17 min,  

49.77 sec 

KCF 0.475 ± 

0.115 

0.551 ± 

0.115 

503.850 ± 

583.050 

9 min,  

16.57 sec 

MIL 0.566 ± 

0.138 

0.649 ± 

0.132 

44.780 ± 

6.580 

32 min,  

55.78 sec 

STRUCK 0.647 ± 

0.139 

0.720 ± 

0.122 

77.100 ± 

20.110 

23 min,  

31.02 sec 

 

However, the performance differences between Struck, CSRT, and MIL are moder-

ate, and the overlapping standard deviations imply that additional statistical analysis 

would be required to determine whether these differences are statistically significant. 
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Fig. 6. Global precision and F1-score per tracker. 

5 Conclusions 

This work presents the implementation update of the original Struck algorithm by Hare 

et al., migrating from OpenCV 2.4 to OpenCV 4.9.0, and its comparative evaluation 

using the ALOV300++ dataset on a conventional workstation. Although the updated 

implementation was successfully tested on both Windows 10 and Ubuntu 22.04, this 

report includes only the experiments conducted under the Ubuntu environment. Exten-

sive testing of the Struck algorithm’s performance in terms of F1-score, precision, and 

frames per second (FPS) metrics was conducted on both mentioned operating systems 

using the ALOV300++ dataset. These evaluations confirmed the algorithm’s efficiency 

and accuracy in various scenarios. It is worth mentioning that the Recall metric was not 

used because, due to the nature of the visual tracking task, it is theoretically always 

equal to 1. Implementations of CSRT, MIL, and KCF trackers were adapted to the 

ALOV300++ dataset and tested successfully on all 314 sequences. 

The comparative analysis of F1-score and FPS across 14 challenging visual tracking 

categories reveals a clear trade-off between accuracy and speed among the evaluated 

trackers. Struck and CSRT consistently deliver high F1-scores, indicating robust track-

ing performance under varying visual conditions, with Struck slightly outperforming 

CSRT in cluttered and low-contrast scenarios. However, although KCF achieves the 

highest FPS across all categories, it demonstrates significantly lower accuracy particu-

larly in complex or long-duration sequences. The observed FPS values confirm that 

MIL offers a moderate balance between tracking accuracy and processing speed but 

does not lead in either category. CSRT emerges as the most balanced option, offering 

a strong compromise between precision and computational efficiency. Struck remains 

a reliable choice for scenarios that prioritize accuracy, albeit at a higher computational 

cost. In contrast, KCF significantly outperforms the other trackers in terms of speed, 
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making it the preferred solution for real-time applications where processing throughput 

is more critical than precise target localization. 

Future work will focus on the use of VOT algorithms and metaheuristics to design, 

implement, and evaluate a VOT system on a SoC-FPGA (System-on-Chip Field-Pro-

grammable Gate Array) platform. SoC-FPGA is a heterogeneous hardware architecture 

that integrates a conventional CPU processor core with FPGA fabric, enabling efficient 

hardware–software co-design. Building upon the current progress of this Ph.D. re-

search, the next phase will involve the development and deployment of the updated 

Struck tracker on a SoC-FPGA platform, such as Xilinx’s ZC706 development board, 

aiming to achieve real-time performance and resource-efficient implementation. 
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